Wallet, J.-C. \& Cody, V. (1995). Acta Cryst. C51, 1193-1195.
Wallet, J.-C., Gaydou, E. M., Molins, E. \& Miravitlles, C. (1994). Z. Kristallogr. 209, 746-748.

Acta Cryst. (1996). C52, 929-931

2-(2-Amino-5-bromobenzoyl)pyridine

Phllip J. Cox, ${ }^{a *}$ Abu T. Md. Anisuzzaman, ${ }^{b}$ R. Howard Pryce-Jones, ${ }^{b}$ Norman Shankland ${ }^{b}$ and Graham G. Skellern ${ }^{b}$
${ }^{a}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB9 1FR, Scotland, and ${ }^{b}$ Department of Pharmaceutical Sciences, University of Strathclyde, Glasgow G11XW, Scotland. E-mail: paspjc@pharmacy.rgu.ac.uk

(Received 29 September 1995; accepted 27 October 1995)

Abstract

Molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}$, are nonplanar and are held together in the crystal by both interand intramolecular hydrogen bonding.

Comment

The drug bromazepam is a benzodiazepine prescribed for the short-term relief of severe anxiety. It is metabolized mainly by hydroxylation and hydrolysis, and $2-$ (2-amino-5-bromobenzoyl)pyridine (ABBP) is a minor metabolite excreted in the urine of human patients (de Silva et al., 1974). In acidic media, bromazepam undergoes a two-step sequential hydrolysis reaction via a labile ring-opened intermediate to give ABBP and glycine (Inui, Yamamoto, Nakae \& Asada, 1982). The kinetics of this reaction have been investigated (Anisuzzaman, 1995) and the crystal structure of bromazepam is known (Butcher, Hamor \& Martin, 1983). Crystals of ABBP were obtained by hydrolysing bromazepam with aqueous HCl and allowing the solution to stand for several days at room temperature. The scheme below shows the proposed reaction sequence for the hydrolysis of bromazepam to 2-(2-amino-5-bromobenzoyl)pyridine.

In ABBP (Fig. 1), an intramolecular $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}$ bond is present; $\mathrm{N} 1-\mathrm{H} 1 A \mathrm{~A} 0.9$ (7), H1A $\cdots \mathrm{O} 1.97$ (7), $\mathrm{N} 1 \cdots \mathrm{O} 2.679$ (7) \AA and $\mathrm{NI}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 135(5)^{\circ}$. This
bond completes a six-membered ring which adopts a sofa conformation, with the H atom slightly displaced [0.17 (6) \AA] from the planar portion of the ring. The O atom (coordinates transposed by $\frac{5}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$) is also involved in intermolecular hydrogen bonding; $\mathrm{N} 1-$ $\mathrm{H} 1 B 0.96$ (8), $\mathrm{H} 1 B \cdots \mathrm{O} 2.18$ (8), N1 $\cdots \mathrm{O} 3.025$ (7) \AA and $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 146(6)^{\circ}$ (Fig. 2). A similar hydro-gen-bonding scheme is present in crystals of 2-aminobenzophenone (Antolini, Vezzosi, Battaglia \& Corradi, 1985). The $\mathrm{N} 2 \cdots \mathrm{H} 6$ and $\mathrm{O} \cdots \mathrm{H} 12$ distances in ABBP are 2.404 (6) and 2.638 (6) \AA, respectively, the former being shorter than the sum of the van der Waals radii (Glusker, Lewis \& Rossi, 1994). The $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular separation across an inversion centre $(1-x,-y,-z)$ is also short at $3.724(2) \AA$ and a

Fig. 1. The atomic arrangement in the title molecule. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The hydrogen-bonding network in the title crystal (50% probability ellipsoids). The O1A atom is the O atom transposed by $\frac{5}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$.

Cambridge Structural Database survey (Allen et al., 1991) of $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular contacts up to $5 \AA$, encompassing 2877 compounds, gave a peak (of number of compounds versus contact distance) at around $4.1 \AA$. This agrees well with the predicted potential minimum separation for $\mathrm{Br} \cdots \mathrm{Br}$ of around $3.95 \AA$ (Pertsin \& Kitaigorodsky, 1987).
The aromatic rings are inclined at an angle of $49.9(1)^{\circ}$ to one another and this compares with a value of 56° for benzophenone (Fleischer, Sung \& Hawkinson, 1968). The ring formed by intramolecular hydrogen bonding is inclined at an angle of only $1.2(8)^{\circ}$ to the phenyl ring. The amino N atom is displaced by 0.17 (3) A from the plane defined by its attached atoms, i.e. $\mathrm{C} 2, \mathrm{H} 1 A$ and $\mathrm{H} 1 B$.

Experimental

Crystals of ABBP were obtained by hydrolysing bromazepam (see Comment).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}$
$M_{r}=277.12$
Monoclinic
$P 2_{1} / n$
$a=3.888$ (3) \AA
$b=9.984(4) \AA$
$c=27.537(8) \AA$
$\beta=93.09(8)^{\circ}$
$V=1067.4(10) \AA^{3}$
$Z=4$
$D_{x}=1.725 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Delft Instruments FAST
diffractometer with an
Oxford Cryosystems lowtemperature device (Cosier \& Glazer, 1986)
Measurement method: area detector
Absorption correction:
XABS2 (Parkin, Moezzi \& Hope, 1995)
$T_{\text {min }}=0.72, T_{\text {max }}=1.00$

Refinement

Refinement on F^{2}
$R(F)=0.0427$
$w R\left(F^{2}\right)=0.0915$
$S=1.010$
1528 reflections
154 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0218 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.028$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 250 reflections
$\theta=2.17-25.06^{\circ}$
$\mu=3.828 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$
Yellow

4346 measured reflections
1528 independent reflections
1141 observed reflections
$[I>2 \sigma(I)]$
$\theta_{\text {max }}=25.06^{\circ}$
$h=-4 \rightarrow 4$
$k=0 \rightarrow 11$
$l=0 \rightarrow 30$
$\Delta \rho_{\text {max }}=1.23 \mathrm{e}^{-3}$ (at the Br site)
$\Delta \rho_{\text {min }}=-0.65 \mathrm{e}_{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {cq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	こ	$U_{\text {eq }}$
Br	0.42125 (13)	0.10110 (5)	$0.05512(2)$	0.0238 (2)
0	1.1926 (9)	0.5109 (4)	0.20724 (14)	0.0267 (10)
N1	$1.0680(12)$	0.2767 (5)	0.2504 (2)	0.0254 (12)
N2	1.1746 (10)	0.5140 (4)	0.0828 (2)	0.0230 (11)
C1	$0.9180(12)$	0.3304 (5)	0.1647 (2)	0.0183 (12)
C2	0.9305 (13)	0.2422 (5)	0.2053 (2)	0.0203 (13)
C3	0.7824 (12)	0.1140 (6)	0.1995 (2)	0.0203 (12)
C4	0.6246 (12)	0.0737 (5)	0.1557 (2)	0.0212 (13)
C5	0.6214 (12)	0.1599 (5)	0.1167 (2)	0.0200 (13)
C6	0.7598 (12)	0.2851 (5)	$0.1202(2)$	0.0172 (12)
C7	1.0634 (13)	0.4654 (5)	0.1680 (2)	0.0230 (13)
C8	$1.0630(12)$	0.5594 (5)	0.1252 (2)	0.0195 (12)
C9	1.1967 (12)	0.6059 (6)	0.0474 (2)	0.0241 (13)
C10	1.1053 (13)	0.7375 (5)	0.0517 (2)	0.0238 (13)
CII	0.9839 (13)	0.7817 (6)	0.0951 (2)	0.0284 (15)
C12	0.9660 (12)	0.6910 (5)	0.1332 (2)	0.0207 (13)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Br}-\mathrm{C} 5$	1.919 (5)	N2-C8	1.345 (7)
$\mathrm{O}-\mathrm{C} 7$	1.253 (6)	C1-C6	1.416 (7)
N1-C2	1.370 (7)	$\mathrm{C} 1-\mathrm{C} 2$	1.422 (7)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.91 (7)	$\mathrm{Cl}-\mathrm{C} 7$	1.463 (8)
$\mathrm{N} 1-\mathrm{HI} B$	0.96 (8)	C7-C8	1.506 (8)
N2-C9	1.346 (7)		
C9-N2-C8	115.8 (5)	$\mathrm{O}-\mathrm{C7}-\mathrm{Cl}$	121.5 (5)
C6-C1-C2	118.6 (5)	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	115.6 (5)
C6-C1-C7	119.7 (5)	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	122.8 (5)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	121.7 (5)	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 12$	124.0 (5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	117.9 (5)	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	124.4 (5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$	123.5 (5)	$\mathrm{HI} A-\mathrm{Nl}-\mathrm{HIB}$	113 (6)
C3-C2-C1	118.5 (5)		
$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	132.1 (5)	O-C7-C8-C12	-44.0 (6)
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	-49.0 (7)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	134.9 (5)

Absence of crystal decay in the X-ray beam was confirmed by checking equivalent reflections at the beginning and end of data collection, which lasted about 8 h . Data were corrected for Lorentz and polarization effects. The non-H atoms were refined with anisotropic displacement parameters. The amino H atoms were refined freely and all other H atoms were allowed to ride on their attached C atoms with a common isotropic displacement parameter.

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994).

The use of the EPSRC X-ray Crystallographic Service at The University of Wales, Cardiff, is gratefully acknowledged. We also thank Roche Products Limited, Welwyn Garden City, England, for providing a sample of bromazepam.

[^0]
References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Anisuzzaman, A. T. Md. (1995). PhD thesis, University of Strathclyde, Glasgow, Scotland.
Antolini, L., Vezzosi, I. M., Battaglia, L. P. \& Corradi, A. B. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 237-239.

Butcher, H., Hamor, T. A. \& Martin, I. L. (1983). Acta Cryst. C39, 1469-1472.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fleischer, E. B., Sung, N. \& Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.
Glusker, J. P., Lewis, M. \& Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists, p. 423. Weinheim: VCH.
Inui, S., Yamamoto, M., Nakae, H. \& Asada, S. (1982). Yakuzaigaku, 42, 71-78.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Pertsin, A. J. \& Kitaigorodsky, A. I. (1987). The Atom-Atom Potential Method, p. 112. Berlin: Springer-Verlag.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Silva, J. A. F. de, Bekersky, I., Brooks, M. A.., Weinfeld, R. E., Glover, W. \& Puglisi, C. V. (1974). J. Pharm. Sci. 63, 1440-1445.

Zsolnai, L. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 931-933
Bis(diphenylphosphino)methane Disulfide

Claire J. Carmalt, ${ }^{a}$ Alan H. Cowley, ${ }^{b} *$ Andreas Decken, ${ }^{b}$ Yvonne G. Lawson ${ }^{a}$ and Nicholas C. NORMAN ${ }^{a}$
${ }^{a}$ Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NEI 7RU, England, and ${ }^{b}$ Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA. E-mail: cowley@mail.utexas.edu

(Received 21 June 1995; accepted 25 September 1995)

Abstract

The title compound, methylenebis(diphenylphosphine sulfide), $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2} \mathrm{~S}_{2}$, has been structurally characterized and is found to be isostructural with its selenium analog.

\section*{Comment}

A number of compounds related to the title compound have been characterized previously by X-ray crystallography. Relevant structures include $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm) [(1); Schmidbaur, Reber, Schier, Wagner \& Müller, 1988], $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ (dppmSe ${ }_{2}$) [(2); Carroll \& Titus, 1971] and the related compound $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ (dppmSe) [(3); Colton, Hoskins \&

Panagiotidou, 1987]. The title compound, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2}-$ $\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\left(\mathrm{dppmS}_{2}\right)$, (4), is isostructural with compound (2) and its crystal structure is reported herein.

(4)

The structure of (4) is comprised of discrete monomers with no short intermolecular interactions. A view of the molecular structure of (4) is shown in Fig. 1, with a packing view shown in Fig. 2. The $\mathrm{P}-\mathrm{S}$ bond lengths $[\mathrm{P}(1)-\mathrm{S}(1) 1.948(1)$ and $\mathrm{P}(2)-$ $\mathrm{S}(2) 1.909$ (1) A] in (4) are slightly shorter than the corresponding $\mathrm{P}-\mathrm{Se}$ bond distances found in compounds (2) [average P-Se 2.100 (4) \AA] and (3) [$\mathrm{P}-\mathrm{Se}$ 2.103 (1) A]. All other bond lengths are similar to those observed in compounds (1)-(3) and deserve no special comment.

Fig. 1. The structure of compound (4) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. A view of the packing in compound (4).

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: BM1039). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

